Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros

Ano de publicação
Tipo de documento
Intervalo de ano
1.
Energy ; 272, 2023.
Artigo em Inglês | Scopus | ID: covidwho-2261563

RESUMO

The Russia-Ukraine conflict and the COVID-19 pandemic have made fossil energy more urgent, and the catalytic pyrolysis of biomass is conducive to energy transformation to achieve global sustainable development. In this paper, the influence mechanisms of different metal ions on biomass pyrolysis under conventional heating and microwave heating conditions were studied. Through thermogravimetric analysis, it was found that the existence of metal ions could change the pyrolysis behaviors of biomass, leading to different degrees of changes in the main pyrolysis temperature and range. Compared with conventional heating conditions, metal ion-loaded biomass samples exhibited higher heating rates under microwave heating conditions due to the possible hotspot phenomenon, resulting in increased gas yields and decreased bio-oil yields. Among them, the trivalent iron ion exhibited excellent catalytic properties for gas generation, with a high gas yield of 57.9% and a bio-oil yield of 12.1%. The components in bio-oil were greatly simplified by microwave irradiation, the number of the bio-oil compounds from the pyrolysis of Fe-loading pine sawdust was reduced to 77, and the GC-MS area of light compounds with carbon number less than 10 was increased to 84.4%. Phenol and furan in bio-oil are also catalytically converted into aromatic hydrocarbons, which are ideal chemical raw materials. © 2023 Elsevier Ltd

2.
Zhonghua Yu Fang Yi Xue Za Zhi ; 57(2): 268-272, 2023 Feb 06.
Artigo em Chinês | MEDLINE | ID: covidwho-2289052

RESUMO

Objective: To establish a rapid and specific quantitative real-time PCR (qPCR) method for the detection of SARS-CoV-2 subgenomic nucleocapsid RNA (SgN) in patients with COVID-19 or environmental samples. Methods: The qPCR assay was established by designing specific primers and TaqMan probe based on the SARS-CoV-2 genomic sequence in Global Initiative of Sharing All Influenza Data (GISAID) database. The reaction conditions were optimized by using different annealing temperature, different primers and probe concentrations and the standard curve was established. Further, the specificity, sensitivity and repeatability were also assessed. The established SgN and genomic RNA (gRNA) qPCR assays were both applied to detect 21 environmental samples and 351 clinical samples containing 48 recovered patients. In the specimens with both positive gRNA and positive SgN, 25 specimens were inoculated on cells. Results: The primers and probes of SgN had good specificity for SARS-CoV-2. The minimum detection limit of the preliminarily established qPCR detection method for SgN was 1.5×102 copies/ml, with a coefficient of variation less than 1%. The positive rate of gRNA in 372 samples was 97.04% (361/372). The positive rates of SgN in positive environmental samples and positive clinical samples were 36.84% (7/19) and 49.42% (169/342), respectively. The positive rate and copy number of SgN in Wild strain were lower than those of SARS-CoV-2 Delta strain. Among the 25 SgN positive samples, 12 samples within 5 days of sampling time were all isolated with virus; 13 samples sampled for more than 12 days had no cytopathic effect. Conclusion: A qPCR method for the detection of SARS-CoV-2 SgN has been successfully established. The sensitivity, specificity and repeatability of this method are good.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , RNA Subgenômico , Reação em Cadeia da Polimerase em Tempo Real/métodos , RNA Viral/genética , Sensibilidade e Especificidade , Nucleocapsídeo/química , Teste para COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA